Week Plan - Nov 18-22 Algebra 1 B

Monday -

- Warmup: Soft PW **pg 85 #1** SOLVE on clean paper by SUBSTITUTION.
- Notes on ELIMINATION method by using online dynamic classroom example video # 1
- Complete #2-4 on pg 85 on paper to show need for rearrange for setup form in elimination method --finish for homework

Tuesday -

- Warmup Soft PW pg 85 #5-6 SOLVE on clean paper by ELIMINATION Method.
- Notes on ELIMINATION method by using online dynamic classroom example video # 2 that includes the need for step of multiplication first
- Complete **#7-9** on pg 85 on paper finish for homework

Wednesday -

- Warmup Soft PW pg 85 #11 SOLVE on clean paper by ELIMINATION Method.
- Notes on ELIMINATION method now can show **SPECIAL CASES** -- no solutions or ALL solutions so DISCUSS cases including the graphs they would produce --- show on graphing calculation the error that occurs on the "calc--intersection" program.
- Complete **#12-14** on pg 85 on paper finish for homework

Thursday -

- Kuta Day use handout and work in small groups on solve by elimination
- https://cdn.kutasoftware.com/Worksheets/Alq1/Systems%20of%20Equations%20Elimination.pdf
- HINT you may want to use videos to run in background with the stop/go method shown the day prior.

FRIDAY -

Review Kuta worksheet progress and have short exit ticket on elimination method.

Week Objective/Learning Target & Sample Examples

Section 5.3: Solving Systems of Linear Equations by Elimination

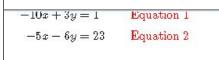
Common Core State Standards: A.CED.A.3, A.REI.C.5, A.REI.C.6

Learning Target: Solve linear systems by elimination.

Success Criteria

- Add or subtract linear equations.
- Solve a system of linear equations by elimination.
- Explain why the elimination method produces a valid solution.
- Solve real-life problems using elimination.

Example 1


Students will solve a system of linear equations by elimination. 3x + 2y = 4

$$3x - 2y = -4$$

-200

Example 2Students will solve a system of linear equations that requires

- multiplication. -10x + 3y = 1
- -5x 6y = 23

SOLUTION

Step 1 Notice that no pairs of like terms have the same or opposite coefficients.

One way to solve by elimination is to multiply Equation 2 by -2 so that the coefficients of the x-terms are opposites.

$$-10x + 3y = 1$$
 $-10x + 3y = 1$ Equation 1
 $-5x - 6y = 23$ Multiply by -2 , $10x + 12y = -46$ Revised Equation 2

Step 2 Add the equations to eliminate the x-terms.

$$-10x + 3y = 1$$
 Equation 1
 $10x + 12y = -46$ Revised Equation 2
 $15y = -45$ Add the equations.

Step 3 Solve for y.

$$15y = -45$$
 Resulting equation from Step 2
 $y = -3$ Divide each side by 15.

Chapter 5: Keystone Objective

ASSESSM A1.1.2	ENT ANCHOR Linear Equations			
Anchor Descriptor		Eligible Content		PA Core Standards
A1.1.2.2	Write, solve, and/or graph systems of linear equations using various methods.	A1.1.2.2.1	Write and/or solve a system of linear equations (including problem situations) using graphing, substitution, and/or elimination. Note: Limit systems to two linear equations.	CC.2.1.HS.F.5 CC.2.2.8.B.3 CC.2.2.HS.D.7 CC.2.2.HS.D.9 CC.2.2.HS.D.10
		A1.1.2.2.2	Interpret solutions to problems in the context of the problem situation. Note: Limit systems to two linear equations.	